TP mini-projet Robotique

BEN MAHMOUD Nassim

DELMOULY Adrien

DUMERIL Clément

DA COSTA FEIRRERA Hugo

SOMMAIRE

- 1) Introduction
 - 1.1. Contexte industriel
 - 1.2. Objectif du projet
 - 1.3. Présentation de la problématique
- 2) Cahier des charges
 - 2.1. Données techniques des pièces
 - 2.2. Contraintes fonctionnelles
 - 2.3. Environnement et sécurité
- 3) Choix du procédé de soudage
 - 3.1. Description du procédé MIG/MAG
 - 3.2. Justification du choix
 - 3.3. Paramètres de soudure retenus
- 4) Choix des robots et des outils
 - 4.1. Robot soudeur : Fanuc ARC Mate 100iC/12S
 - 4.2. Robots manipulateurs : Fanuc M-10iD/12
 - 4.3. Outillages et EOAT (pince 36005F-200)
- 5) Implantation de la cellule robotisée
 - **5.1.** Description de la chaîne (entrée \rightarrow soudure \rightarrow sortie)
 - 5.2. Disposition spatiale (plan 2D ou schéma)
 - 5.3. Organisation des postes
- 6) Analyse des risques
 - 6.1. Identification des dangers
 - 6.2. Moyens de prévention et de protection
 - 6.3. Normes applicables (ISO 10218-2, etc.)
- 7) Simulation sous Roboguide
 - 7.1. Capture d'écran des étapes clés
 - 7.2. Présentation des trajectoires
- 8) Temps de cycle et cadence estimée
 - 8.1. Analyse des mouvements robotisés
 - 8.2. Estimation de la cadence finale
- 9) Analyse économique
 - 9.1. Coût des robots et équipements
 - 9.2. Coûts d'intégration et formation
 - 9.3. Rentabilité attendue
- 10) Conclusion et perspectives
 - 10.1. Bilan du projet
 - 10.2. Limites de la simulation
 - 10.3. Perspectives d'amélioration
- 11) Annexe

1) Introduction

1.1. Contexte industriel

Ce projet porte sur le soudage automatisé de deux plaques en acier doux, de dimensions 50×50 mm et d'épaisseur 1 mm, assemblées à 90° pour former une petite structure en "L". Ces pièces servent de supports ou de fixations pour des capteurs et modules électroniques dans des systèmes d'automatisation industrielle.

Ce type d'assemblage est fréquent dans les industries modernes, notamment dans l'automatisation et la robotique, où la production doit être rapide, précise et fiable. L'enjeu principal est de garantir une qualité de soudure constante malgré la faible épaisseur et la petite taille des plaques, tout en maintenant une cadence élevée.

Pour cela, la production est entièrement robotisée avec un bras de soudage industriel, capable de contrôler précisément la vitesse d'avance et d'assurer une répétabilité parfaite. Le procédé MIG/MAG avec un fil fin est utilisé pour offrir un bon compromis entre rapidité, qualité et coût.

Ce projet illustre les défis actuels de l'industrie : produire efficacement et sans erreur, tout en maintenant un haut niveau de qualité sur des pièces techniques même simples

1.2. Objectif du projet

L'objectif principal du projet Robotguide est de concevoir et simuler une cellule robotisée de soudage automatisée, capable d'assembler deux plaques métalliques selon un angle précis de 45°. Cette cellule s'inscrit dans une logique d'optimisation industrielle visant à automatiser les opérations de soudure dans un contexte de production en série, en garantissant précision, sécurité et cadence soutenue.

Plus concrètement, la cellule devra :

Automatiser la prise, la pose, la soudure et l'évacuation de plaques métalliques.

Réaliser une soudure en angle (cordon en V ou en L) à l'aide d'un robot Fanuc ARC Mate, en exploitant le procédé MIG/MAG.

S'appuyer sur une simulation 3D dans le logiciel Roboguide (WeldPRO), permettant de valider la faisabilité technique et les performances temporelles du cycle.

Intégrer plusieurs robots (manipulateurs + soudeur) et des éléments mécaniques tels que tapis roulants, supports fixes inclinés, et grippers industriels.

Respecter les normes de sécurité et s'adapter aux contraintes de l'environnement de travail industriel.

Ce projet vise donc à démontrer la capacité du groupe à maîtriser les outils numériques de simulation, à modéliser une ligne automatisée cohérente et à analyser les enjeux techniques et économiques d'un tel système.

1.3. Présentation de la problématique

Dans le secteur industriel, les opérations de soudage sont souvent répétitives, exigeantes en précision et soumises à des contraintes de sécurité strictes. Lorsqu'elles sont réalisées manuellement, ces opérations peuvent être sources de variabilité, de pénibilité pour les opérateurs et de risques (exposition aux fumées, brûlures, erreurs humaines).

La problématique centrale de ce projet réside dans la robotisation d'un poste de soudure angulaire : comment concevoir une cellule automatisée capable de prendre, positionner et souder deux plaques métalliques inclinées à 45°, tout en garantissant un temps de cycle optimisé, une qualité de soudure constante et une intégration sécurisée dans l'environnement de production ?

Ce défi implique plusieurs sous-problèmes :

Synchroniser plusieurs robots (manipulation, soudure, évacuation) dans un espace restreint.

Concevoir une géométrie de support adaptée à l'assemblage en angle.

Programmer des trajectoires de soudure précises sur un cordon incliné.

Respecter les normes de sécurité liées à l'automatisation d'une cellule robotisée.

Valider la solution via simulation numérique pour anticiper les contraintes physiques avant un déploiement réel.

La résolution de cette problématique repose sur l'utilisation combinée de robots Fanuc, d'un environnement de simulation (Roboguide), d'un outillage adapté, et d'une analyse fonctionnelle rigoureuse. Le projet Robotguide ambitionne ainsi d'apporter une réponse concrète, reproductible et industrialisable à cette problématique.

2. Cahier des charges

2.1. Données techniques des pièces

Le système automatisé Robotguide est conçu pour manipuler et assembler des **plaques métalliques planes** destinées à être soudées en angle. Ces plaques sont introduites sur la ligne de production par un **tapis roulant**, positionnées par un **robot manipulateur**, puis soudées par un **robot soudeur** à l'aide du procédé MIG/MAG.

Les caractéristiques techniques des pièces à assembler sont les suivantes .

2.2. Contraintes fonctionnelles

La mise en place d'une cellule robotisée de soudure impose de nombreuses exigences techniques, tant sur le plan de la qualité que de la productivité, de la sécurité et de l'intégration dans une ligne de production existante.

Afin de garantir la performance globale du système, les fonctions attendues ont été traduites en critères mesurables, associés à des niveaux d'exigence précis.

Le tableau ci-dessous synthétise ces contraintes fonctionnelles, en distinguant les objectifs principaux (fonctions), les éléments évaluables (critères) et les seuils à respecter (niveaux d'exigence). Ce travail constitue une base solide pour guider les choix techniques, la programmation robotique et la validation du système dans l'environnement de simulation Roboguide.

Fonctions	Critères	Niveaux d'exigence
Assembler deux plaques métalliques à 90°	Angle obtenu après soudage	90° ± 1°
Assurer la solidité de l'assemblage	Résistance mécanique du cordon	Conforme aux essais de traction ou flexion internes
Maintenir une qualité constante de soudure	Présence de défauts visuels (porosité, manque de fusion)	0 défaut visible sur > 98 % des pièces
Réaliser une production rapide	Temps de cycle par pièce	≤ 12 secondes par pièce
Respecter la géométrie et l'esthétique du cordon	Régularité du cordon (largeur, hauteur, projection)	Écart ≤ ±1 mm / cordon lisse
Préserver l'intégrité des plaques fines	Déformation thermique après soudage	Aucun gauchissement visible
Assurer un positionnement précis des pièces	Écart angulaire ou linéaire entre pièces avant soudure	< 0.5 mm d'écart, bridage rigide
Garantir la répétabilité de l'opération	Écart entre pièces sur une série	≤ 2 % de dérive dimensionnelle
Intégrer la cellule dans une ligne de production	Compatibilité avec convoyeurs / automatisation	Adaptation mécanique et logicielle prévue
Limiter les coûts de production	Coût unitaire par soudure	≤ 0.10 € (à ajuster selon production réelle)
Réduire les besoins en maintenance	Accessibilité et simplicité des interventions	Maintenance préventive < 15 min / jour
Assurer la sécurité des opérateurs	Conformité aux normes CE, ISO 10218	100 % conforme, protection installée

2.3. Environnement et sécurité

Dans toute installation industrielle, et particulièrement dans une cellule robotisée, il est impératif de veiller à la fois à la protection des opérateurs et au respect des normes environnementales.

Le projet Robotguide doit s'intégrer harmonieusement dans un environnement de production tout en minimisant les risques liés aux machines et en garantissant une accessibilité optimale pour la maintenance.

À cette fin, les conditions d'environnement (espace, ventilation, bruit) et les dispositifs de sécurité (barrières, arrêts d'urgence, signalisation) doivent être clairement définis et quantifiés.

Le tableau ci-dessous synthétise ces exigences en les articulant selon des rubriques, des critères précis et les niveaux d'exigence à atteindre.

Rubrique	Critère	Exigence
Sécurité opérateur	Conformité aux normes CE, ISO 10218 et ISO 12100	100 % de conformité, dispositifs d'arrêt d'urgence et barrières installées
Accessibilité et ergonomie	Faciliter l'accès pour la maintenance	Intervention possible en < 15 min sans démontage majeur
Environnement physique	Espace de travail, ventilation et niveau sonore	Cellule conforme aux exigences industrielles (ventilation adéquate, niveau sonore < 80 dB)
Intégration de la cellule	Compatibilité avec les convoyeurs et autres équipements	Interface mécanique et logicielle prévue pour une intégration harmonieuse

3. Choix du procédé de soudage

3.1. Description du procédé MIG/MAG

L'analyse fonctionnelle du système Robotguide a pour objectif d'identifier les **fonctions principales et contraintes techniques** associées à la cellule robotisée de soudage. Elle permet de structurer les besoins selon une logique "fonction de service / fonction contrainte", et ainsi guider la conception technique.

Le diagramme FAST simplifié ci-dessous résume l'ensemble des **fonctions techniques**, **sous-fonctions** et **contraintes** du projet.

Fonction principale (FP)	Sous-fonctions (SF)	Contraintes associées (C)
Assembler deux plaques métalliques à 90°	Positionner une plaque sur le support	Plaques fines (ép. 1 mm) à manipuler avec soin
	Maintenir l'orientation des plaques	Angle de 45° constant sur le support
Réaliser une soudure en angle	Démarrer la séquence de soudure	Torche MIG/MAG, pas de collision possible
	Régler le chemin et la vitesse de soudure	Qualité du cordon à respecter (pas de porosité)
Alimenter la cellule en pièces	Transporter les plaques sur un convoyeur	Cadence continue requise, pas de blocage ni collision
	Distribuer les plaques au robot	Épaisseur et masse faibles à gérer
Évacuer les pièces soudées	Prendre la pièce finie Déposer dans une	Pas de déformation due à la soudure
	zone de stockage	Trajectoire sans contact parasite
Garantir la sécurité de fonctionnement	Empêcher l'accès à la cellule pendant la soudure	Norme ISO 10218 et arrêt d'urgence installés
Faciliter la maintenance de la cellule	Rendre accessibles les composants	Maintenance préventive quotidienne < 15 min
Intégrer la cellule à une ligne complète	Synchroniser avec les autres postes / convoyeurs	Interfaces mécaniques et logicielles prévues

Ce tableau permet de visualiser rapidement les priorités techniques et les réponses attendues du système robotisé Robotguide. Il servira de base à la conception de la cellule dans Roboguide, à la sélection des composants et à la validation de la performance globale.

3.2. Justification du choix

La cellule robotisée Robotguide repose sur une organisation tripartite combinant manipulation, soudure et évacuation des pièces, orchestrée par trois robots FANUC. L'architecture est pensée pour assembler automatiquement deux plaques métalliques en L (angle de 90°), soudées sur un support incliné à 45°, avec une cadence soutenue et une qualité répétable.

1. Système d'alimentation

Convoyeur d'entrée : alimente la cellule en plaques métalliques planes, avec une cadence régulière.

Butées mécaniques : permettent l'accumulation des plaques sans collision, prêtes à être saisies par le robot manipulateur.

2. Manipulation des plaques

Robot manipulateur (Robot 1 - central):

Positionné entre le convoyeur d'entrée et les postes de soudure.

Équipé d'un EOAT adapté (pince à vide, magnétique ou mécanique).

Sa fonction principale est de prendre successivement deux plaques :

La première est placée sur l'un des côtés du support incliné à 45°.

La seconde est posée perpendiculairement, formant un angle droit avec la première.

Le positionnement précis permet la mise en condition idéale pour la soudure.

3. Système de soudure

Deux robots soudeurs (Robot 2 et Robot 3):

Disposés en parallèle sur une même ligne horizontale, de part et d'autre des supports.

Chacun est équipé d'une torche MIG/MAG et programmé pour intervenir sur une zone précise du support.

Les deux robots peuvent souder simultanément ou en alternance, en fonction du scénario de cycle.

La soudure est effectuée à l'interface des deux plaques formant l'angle, directement sur le support fixe.

4. Supports fixes

Des supports inclinés à 45°, répartis en parallèle sur une ligne fixe, permettent de stabiliser l'assemblage pendant la soudure.

Chaque support sert de gabarit mécanique pour garantir l'angle de soudure (90° obtenu après assemblage).

5. Évacuation des pièces

Une fois la soudure achevée, la pièce est automatiquement évacuée (par glissement, robot secondaire ou opérateur).

Une zone de stockage final réceptionne les assemblages finis.

6. Automatisme et sécurité

Contrôleur central : coordonne les mouvements des trois robots, les convoyeurs et les éventuels capteurs (fin de course, présence...).

Pupitre opérateur HMI : permet le démarrage du cycle, la supervision et les arrêts d'urgence.

Barrières immatérielles, rideaux lumineux et boutons d'arrêt assurent la conformité aux normes CE / ISO 10218-1.

3.3. Paramètres de soudure retenus

Le choix des composants pour la cellule robotisée Robotguide repose sur des critères de robustesse, de compatibilité logicielle (Fanuc Roboguide), de précision et de sécurité. Chaque composant a été sélectionné pour assurer une intégration fluide dans l'environnement de simulation et garantir la reproductibilité en cas de transposition réelle.

A.Robots industriels

Désignation	Position	Modèle Fanuc	Fonction	Motivation du choix
Robot 1 – Manipulateur	Position centrale	M- 10iD/12	Saisie et positionnement des plaques	Léger, rapide, charge 12 kg, très utilisé pour le pick-and- place
Robot 2 – Soudeur gauche	Ligne de soudure	ARC Mate 100iD	Soudure MIG/MAG d'un côté des plaques	Précis, optimisé pour la soudure, compatible Roboguide ArcTool
Robot 3 – Soudeur droit	Ligne de soudure	ARC Mate 100iD	Soudure MIG/MAG sur l'autre côté	Même modèle que Robot 2 : facilité de maintenance et symétrie

B. Outillage en bout de bras (EOAT)

Robot	Outil utilisé	Caractéristiques	Justification
concerné			
Robot 1	Pince magnétique ou ventouse plate	Adapté aux plaques fines métalliques	Saisie douce sans endommager, haute répétabilité
Robots 2 & 3	Torche MIG/MAG	Modèle Fanuc intégré pour ArcTool	Intégration parfaite avec les trajectoires de soudure

C. Système de convoyage

Туре	Position	Rôle	Spécificités
Convoyeur d'entrée	Amont de la cellule	Acheminer les plaques	Vitesse contrôlable, détecteurs de présence éventuels
Zone de stockage (fin de ligne)	Aval de la cellule	Réception des pièces soudées	Possibilité d'ajout d'un convoyeur de sortie ou d'un bac fixe

D. Gabarits et supports

Élément	Inclinaison	Fonction	Avantage
Support	45°	Maintien	Simple, rigide, évite les
métallique		angulaire pour	erreurs de
		soudure en L	positionnement

E. Dispositifs de sécurité et commande

Composant	Fonction	Norme/Justification
Barrières	Protéger la zone de	Conformité ISO 10218
immatérielles	travail	
Arrêts d'urgence	Permettre l'arrêt immédiat	Sécurité opérateur
Interface I/O et	Superviser les	Simplicité d'utilisation,
HMI	cycles, diagnostics	intégration Fanuc

4) Choix des robots et des outils

Dans le cadre du projet Robotguide, trois robots Fanuc ont été sélectionnés pour assurer les opérations de manipulation et de soudure des plaques métalliques. Ces choix techniques sont fondés sur la

compatibilité avec l'environnement de simulation Roboguide, la précision nécessaire pour l'assemblage, et les exigences du cahier des charges en termes de cadence et de fiabilité.

4.1. Robot soudeur : Fanuc ARC Mate 100iC/12S

Le robot Fanuc ARC Mate 100iC/12S a été choisi pour les opérations de soudure à l'arc. Ce modèle est spécialement conçu pour les applications MIG/MAG et offre une grande précision sur des trajectoires complexes, ainsi qu'une excellente répétabilité.

Charge utile: 12 kg

Portée maximale: 1 420 mm

Précision de répétabilité : ±0.08 mm

Avantage : bras compact, idéal pour les espaces restreints et la soudure de

précision.

Deux exemplaires de ce robot sont utilisés, disposés en parallèle sur la ligne de soudure, pour souder simultanément ou alternativement chaque ensemble de plaques sur le support incliné.

4.2. Robots manipulateurs : Fanuc M-10iD/12

Le robot central chargé de la manipulation des plaques est un Fanuc M-10iD/12. Ce robot est reconnu pour sa rapidité et sa compacité, ce qui en fait un excellent choix pour les applications de pick-and-place avec une grande précision.

Charge utile: 12 kg

Portée maximale: 1 441 mm

Répétabilité : ±0.02 mm

Avantage : intégration facile, très utilisé pour les systèmes de manutention automatisés.

Ce robot saisit successivement deux plaques métalliques sur le convoyeur d'entrée, puis les positionne avec précision sur le support à 45°, assurant ainsi la préparation à la soudure.

4.3. Outillages et EOAT (pince 36005F-200)

L'outillage en bout de bras (EOAT) sélectionné pour le robot manipulateur est le modèle EMH-RP 045-B, un système de préhension magnétique adapté aux plaques métalliques fines.

Type: préhenseur magnétique

Référence: EMH-RP 045-B

Fonction : prise sécurisée de pièces métalliques planes sans les endommager

Avantage : efficacité sur pièces de faible épaisseur, simplicité d'intégration dans Roboguide.

Cet outil permet une manipulation précise et douce, essentielle pour éviter les déformations avant soudure.

5) Implantation de la cellule robotisée

5.1. Description de la chaîne (entrée → soudure → sortie)

La cellule robotisée Robotguide est structurée en un cycle complet automatisé :

Entrée

Les plaques métalliques arrivent sur un convoyeur d'alimentation.

Elles s'alignent grâce à une butée fixe, garantissant un positionnement initial optimal.

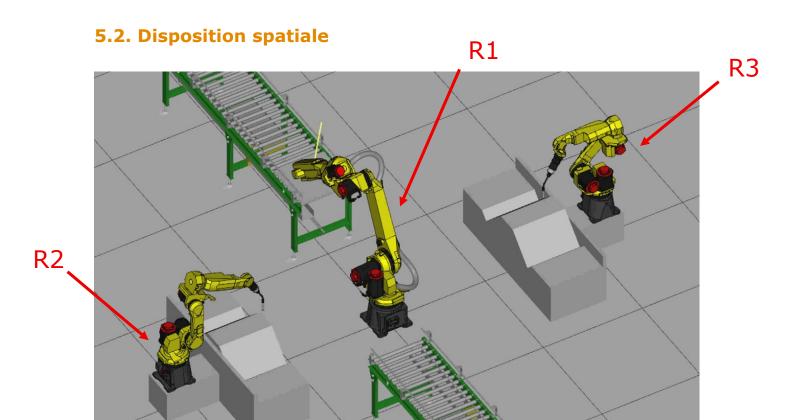
Manipulation initiale

Le robot manipulateur central (R1) saisit deux plaques :

La première est placée sur le support incliné à 45°.

La seconde est posée perpendiculairement, pour former un angle droit.

Soudure


Deux robots soudeurs (R2 et R3) réalisent trois passes de soudure successives (ex : racine + remplissage + finition) sur la jonction entre les deux plaques.

Les robots travaillent en simultané ou en alternance selon la programmation.

Sortie

Une fois la soudure achevée, le robot manipulateur (R1) reprend la pièce soudée.

Il la dépose sur un deuxième convoyeur, dédié à l'évacuation des pièces assemblées, vers une zone de stockage ou de contrôle qualité.

5.3. Organisation des postes

Poste	Nom	Fonction principale	Composants associés
Poste 1	Alimentation	Acheminement des plagues vierges	Convoyeur d'entrée, butée
Poste 2	Manipulation initiale	Préhension et positionnement angulaire	Robot M-10iD/12 (R1), EOAT magnétique
Poste 3	Soudure	Réalisation de 3 passes MIG/MAG	2 Robots ARC Mate 100iC/12S (R2 et R3), torches
Poste 4	Reprise de la pièce	Extraction de la pièce soudée	Robot M-10iD/12 (R1)
Poste 5	Évacuation	Acheminement des pièces assemblées	Convoyeur de sortie, zone de stockage

6) Analyse des risques

6.1. Identification des dangers

Zone / Action	Type de danger	Conséquence potentielle
Mouvement des robots	Choc, écrasement	Blessures graves en cas d'intrusion
Outils de soudure	Rayonnement, chaleur, projections	Brûlures, incendie, dommages oculaires
Convoyeurs en mouvement	Cisaillement, traction	Coincement ou arrachement
Surchauffe des pièces	Températures élevées post-soudure	Risque de brûlure ou de déformation
Défaillance logicielle / capteurs	Mauvais positionnement ou minutage	Collision ou arrêt de cycle imprévu
Intervention humaine (maintenance)	Exposition en zone dangereuse	Contact accidentel avec un robot actif

6.2. Moyens de prévention et de protection

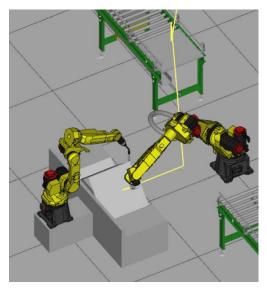
Type de	Équipement	Fonction
protection		
Protection	Barrières	Interrompent
immatérielle	immatérielles,	automatiquement la cellule
	rideaux lumineux	en cas d'intrusion
Protection	Carters fixes,	Empêchent l'accès non
physique	grillages	autorisé aux zones
		dangereuses
Arrêts d'urgence	Boutons rouges à	Permettent de couper
	accès immédiat	l'alimentation
		instantanément
Interface	HMI Fanuc +	Contrôle uniquement
opérateur	permissions	autorisé par personnel
sécurisée		habilité
Capteurs de	Fins de course,	Détection d'erreurs de
position et de	capteurs de collision	placement ou de force
charge		
Signalisation	Gyrophares, alarmes	Indiquent les cycles en cours
visuelle et sonore		ou les anomalies

6.3. Normes applicables (ISO 10218-2, etc.)

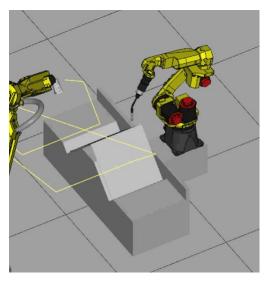
L'ensemble de la cellule est conçu dans le respect des normes européennes et internationales relatives à la sécurité des systèmes automatisés, notamment :

ISO 10218-2 : Robots industriels – Exigences de sécurité pour l'intégration.

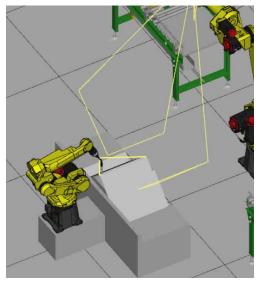
ISO 12100 : Principes généraux de conception – Appréciation et réduction des risques.

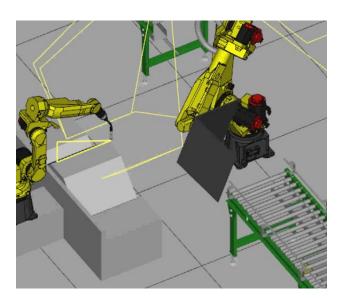

ISO 13849-1 : Sécurité des machines – Parties des systèmes de commande relatives à la sécurité.

Directive Machines 2006/42/CE : Conformité obligatoire pour toute machine mise sur le marché européen.

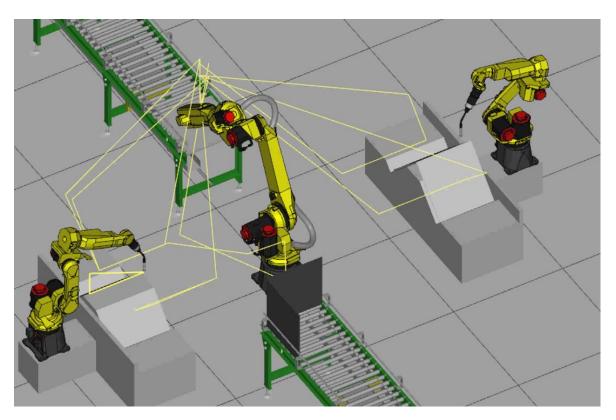

ISO 15066 (le cas échéant) : Sécurité des robots collaboratifs (non prioritaire ici, car cellule non collaborative).

7) Simulation sous Roboguide


7.1. Capture d'écran des étapes clés


Dépôt de la plaque sur le support

Idem sur l'autre support (en opposition de phase)



Début de la première soudure

Récupération de la pièce soudée par le robot manipulateur et dépôt sur le convoyeur

7.2. Présentation de la trajectoire

Trajectoire des robots manipulateur et soudeur pour une itération

8) Temps de cycle et cadence estimée 8.1. Analyse des mouvements robotisés

Pour le robot soudeur, après calcul (voir annexe), la plage de vitesse 3 à 6 mm/s est réaliste pour un cordon d'angle à 90°, sur acier 10 mm, en soudage robotisé MIG/MAG avec 3 passes.

De plus, le robot manipulateur a une vitesse de 1000mm/s lors du cycle

8.2. Estimation de la cadence finale

Ainsi, d'après la simulation, un cycle durerait 70 secondes pour souder 2 fois 2 plaques

9) Analyse économique

9.1. Coût des robots et équipements

L'investissement initial comprend l'acquisition des robots, des systèmes de soudure, de manipulation, ainsi que les composants d'automatisation nécessaires au fonctionnement complet de la cellule.

Équipement	Quantité	Coût unitaire estimé (€)	Coût total (€)
Fanuc M-10iD/12 (robot manipulateur)	1	28 000	28 000
Fanuc ARC Mate 100iC/12S (robots soudeurs)	2	32 000	64 000
Torches MIG/MAG (intégrées)	2	3 000	6 000
EOAT – Pince magnétique EMH-RP 045-B	1	2 000	2 000
Contrôleur Fanuc + pupitre HMI	1	5 000	5 000
Système de convoyeurs (entrée + sortie)	2	5 000	10 000
Accessoires divers (supports, câblage)	_	-	5 000
Total estimé	_	_	120 000 €

9.2. Coûts d'intégration et formation

Au-delà de l'investissement matériel, la mise en service d'une cellule robotisée nécessite un budget complémentaire pour la programmation, l'intégration mécanique et la montée en compétence des équipes.

Poste	Montant estimé (€)		
Programmation Fanuc (Roboguide + réalité)	6 000		
Intégration mécanique (supports, fixation)	3 000		
Formation opérateur / maintenance	4 000		
Études techniques préalables	2 000		
Total intégration et formation	15 000 €		

9.3. Rentabilité attendue

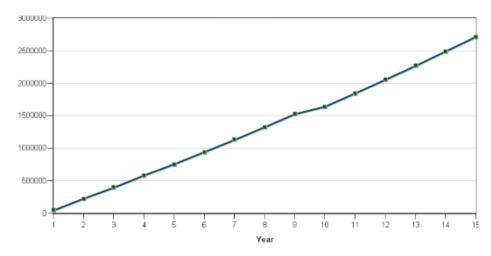
Total Robotic System Cost Vs. Current Operational Costs

Less Than 1

\$ 2,334,611 US DOLLARS

\$ 630,345

Break Even Point


Labor Savings

Productivity Savings

ROI Chart 3

Year	System Costs ?	Maintenance Costs ?	Operating Costs* ?	Labor Savings** ?	Productivity Savings*** ?	Other Savings	Yearly Cash Flow	Cumulative Cash Flow
1	\$ 120,000	\$ 1,500	\$ 9,000	\$ 135,000	\$ 36,450	\$ 10,000	\$ 50,950	\$ 50,950
2		\$ 1,500	\$ 9,180	\$ 137,700	\$ 37,179	\$ 10,000	\$ 174,199	\$ 225,149
3		\$ 1,500	\$ 9,364	\$ 140,454	\$ 37,923	\$ 10,000	\$ 177,513	\$ 402,662
4		\$ 1,500	\$ 9,551	\$ 143,263	\$ 38,681	\$ 10,000	\$ 180,893	\$ 583,555
5		\$ 15,000	\$ 9,742	\$ 146,128	\$ 39,455	\$ 10,000	\$ 170,841	\$ 754,396
6		\$ 1,500	\$ 9,937	\$ 149,051	\$ 40,244	\$ 10,000	\$ 187,858	\$ 942,254
7		\$ 1,500	\$ 10,135	\$ 152,032	\$ 41,049	\$ 10,000	\$ 191,445	\$ 1,133,699
8		\$ 1,500	\$ 10,338	\$ 155,073	\$ 41,870	\$ 10,000	\$ 195,104	\$ 1,328,803
9		\$ 1,500	\$ 10,545	\$ 158,174	\$ 42,707	\$ 10,000	\$ 198,836	\$ 1,527,639
10		\$ 90,000	\$ 10,756	\$ 161,337	\$ 43,561	\$ 10,000	\$ 114,143	\$ 1,641,782
n		\$ 1,500	\$ 10,971	\$ 164,564	\$ 44,432	\$ 10,000	\$ 206,526	\$ 1,848,308
12		\$ 1,500	\$ 11,190	\$ 167,856	\$ 45,321	\$ 10,000	\$ 210,486	\$ 2,058,794
13		\$ 1,500	\$ 11,414	\$ 171,213	\$ 46,227	\$ 10,000	\$ 214,526	\$ 2,273,320
14		\$ 1,500	\$ 11,642	\$ 174,637	\$ 47,152	\$ 10,000	\$ 218,646	\$ 2,491,966
15		\$ 1,500	\$ 11,875	\$ 178,130	\$ 48,095	\$ 10,000	\$ 222,849	\$ 2,714,816
TOTALS		\$ 124,500	\$ 155,641	\$ 2,334,611	\$ 630,345	\$ 150,000		
4			•					

Robotic System Cumulative Cash Flow

10) Conclusion et perspectives

10.1. Bilan du projet

Le Projet RoboGuide a permis de concevoir une cellule robotisée capable de réaliser l'assemblage automatisé de deux plaques métalliques à 90° via une séquence de soudure en trois passes. Grâce à l'utilisation des robots Fanuc (M-10iD/12 pour la manipulation et ARC Mate 100iC/12S pour la soudure), l'ensemble du cycle – de l'alimentation à l'évacuation – a pu être modélisé et optimisé dans l'environnement Roboquide.

Les objectifs principaux ont été atteints :

Automatisation complète de l'assemblage,

Réduction de la main-d'œuvre directe,

Amélioration de la qualité et de la répétabilité de la soudure,

Respect des contraintes de sécurité et des normes ISO applicables

10.2. Limites de la simulation

Malgré la précision offerte par Roboguide, certaines limites demeurent :

La simulation ne prend pas en compte les effets thermiques de la soudure (déformations, contraintes internes),

Les composants réels (rails, supports) ont été modélisés sans tolérances de fabrication,

L'absence de feedback capteur dans l'environnement virtuel limite la détection des défauts ou erreurs de positionnement,

Le temps de cycle simulé ne reflète pas encore les ralentissements liés aux sécurités ou arrêts techniques.

10.3. Perspectives d'amélioration

Plusieurs pistes d'optimisation peuvent être envisagées pour affiner la cellule robotisée ou en préparer le déploiement industriel :

Ajout de capteurs de vision pour corriger automatiquement les erreurs de placement,

Mise en place d'un contrôle qualité automatisé des cordons de soudure,

Simulation plus fine via un logiciel de modélisation multiphysique (ex. Ansys, COMSOL),

Réduction du temps de cycle en optimisant les trajectoires des robots soudeurs, Intégration de la cellule dans une ligne modulaire avec d'autres postes robotisés, Réalisation d'un prototype physique pour valider les résultats de la simulation.

11) **ANNEXE**:

Details des calculs

Calcul de la vitesse d'avance pour soudage robotisé MIG/MAG

CONTEXTE

- Procédé : MIG/MAG robotisé (Fanuc Arc Mate 100iC/12S)

- Épaisseur acier : 10 mm

- Type de joint : Angle 90°

- Position : à plat

- Objectif : Bonne qualité de soudure

- Fil: Acier Ø 1.2 mm

- Tension: 26 V

- Intensité: 220 A

- Gorge prévue : 6 mm

- Chanfrein probable : Oui (V ou K)

- Nombre de passes : 2 à 3

PARAMÈTRES PHYSIQUES

- Facteur de fusion spécifique : 0.02 g/(A·s)

- Densité de l'acier : 7.85 g/cm³

- Forme du cordon d'angle : triangulaire

ÉTAPE 1 - Calcul du débit de dépôt métallique (Q)

Débit (g/s) = Intensité
$$\times$$
 facteur fusion
= 220 \times 0.02 = 4.4 g/s

Débit (cm³/s) =
$$4.4 / 7.85 \approx 0.561 \text{ cm}^3/\text{s}$$

Débit (mm³/s) = $0.561 \times 1000 = 561 \text{ mm}^3/\text{s}$

ÉTAPE 2 - Calcul de la section du cordon (A)

Formule : $A = (a^2)/2$

Gorge a = 6 mm

$$A = (6^2)/2 = 36 / 2 = 18 \text{ mm}^2$$

ÉTAPE 3 - Vitesse d'avance théorique (V)

$$V = Q / A = 561 \text{ mm}^3/\text{s} / 18 \text{ mm}^2 = 31.17 \text{ mm/s}$$

Critique du résultat :

Cette valeur est trop élevée pour un cordon sur 10 mm d'épaisseur avec haute qualité.

En réalité, plusieurs passes sont nécessaires.

SI 3 PASSES
$$\rightarrow$$
 section par passe = 6 mm²

$$V = 561 / 6 = 93.5 \text{ mm/s}$$
 (valeur théorique)

MAIS dans la pratique :

- Pour garantir fusion correcte
- Éviter projections, porosité, sous-fusion
- → Vitesse recommandée robotisée : 3 à 6 mm/s = 180 à 360 mm/min

Contact

-

Mail

Téléphone

Adresse

